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Abstract
An asymptotic low-temperature expansion is performed for an integrable
bosonic lattice model and for the critical spin-1/2 Heisenberg chain in a
magnetic field. The results apply to the integrable Bose gas as well. We
also comment on a high-temperature expansion of the bosonic lattice model.
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1. Introduction

The calculation of the relevant thermodynamic potential of an interacting many-body system
in the thermodynamic limit belongs to the most fundamental problems of statistical mechanics.
For Yang–Baxter integrable models, very sophisticated techniques such as the thermodynamic
Bethe ansatz (TBA; for a review, see [1]) and the quantum transfer matrix (QTM; for a review,
see [2]) have been developed which yield exact expressions for the thermodynamic potential
in terms of certain auxiliary functions. These auxiliary functions are determined by nonlinear
integral equations, which are well suited for numerical investigations (see, for example, [3–5]).

As far as the spin-1/2 XXZ-Heisenberg chain is concerned, high-temperature expansions
have been performed analytically (see, for example, [1, 6, 7]) up to high orders. At low
temperatures, the leading (‘universal’) terms have been obtained from the exact solution. In
the absence of a magnetic field, higher orders were calculated by combining the T = 0 Bethe
ansatz with an effective field theory for the low-lying excitations [8, 9]. It still remains a
challenging problem to perform such a low-temperature expansion directly from the exact
solution for the thermodynamical potential at finite temperatures.

On the other hand, for integrable bosonic systems, only the ‘universal’ terms stemming
from the Luttinger-liquid character are known for general coupling and particle density
[10, 11]. A virial expansion of the integrable Bose gas was given in [3]. Very recently,
the low-temperature behaviour of an anyonic gas at large interaction strength was considered
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[12]. However, a systematic low-temperature expansion for integrable bosonic systems with
arbitrary interaction and particle density has not been performed yet.

In this paper, a Sommerfeld-type expansion is applied to the TBA/QTM equations for
integrable systems in an external field, namely the q-Bose model with a chemical potential
and the critical XXZ-chain in a magnetic field. The results are directly transferable to the
integrable Bose gas, and the method itself can be employed for other integrable systems
with external fields. The importance of this work lies in the close connection between the
low-energy effective Hamiltonian and the low-temperature expansion of the thermodynamical
potential, as pointed out in [8, 9] for the zero-field case of the Heisenberg chain. The low-lying
excitations of this model, as well as of the q-Bose model, are described by a Gaussian model.
In [8, 9], the leading irrelevant operators and its coefficients were identified for the Heisenberg
chain in zero field. For finite field, the leading irrelevant operators have been found recently
[13]. It is an interesting problem now to relate the low-temperature expansion found here to the
coefficients of the irrelevant operators in this effective Hamiltonian for the spin chain. Besides
that, for the q-Bose model, only the scaling dimension of the leading irrelevant operators is
known, but not the operators themselves nor the coefficients. This work constitutes a first
step to fill this gap. The knowledge of the effective Hamiltonian allows for the calculation of
asymptotics of correlation functions [8, 9, 13].

Our main result is an asymptotic low-temperature expansion of the thermodynamic
potential g = g(T , µ) in even powers of the temperature,

g(T , µ) =
∑

ν

gν(µ)T 2ν, ν = 0, 1, 2, . . . . (1)

The coefficients gν(µ) depend on the chemical potential µ only. For the Heisenberg chain, µ

is replaced by the magnetic field h. We emphasize that equation (1) is not a Taylor expansion
in T, but rather an asymptotic expansion. This means that the coefficient in order T 2m is
defined as

lim
T →0

g(T , µ) − ∑m−1
ν=0 gν(µ)T 2ν

T 2m
=: gm(µ).

The first two coefficients in equation (1) are well known: g0 constitutes the ground-state energy.
Furthermore, g1 = −π/(6v), where v is the velocity of elementary excitations (‘universal
term’). Our approach allows for the calculation of gν�2, and the calculation of g2 is performed
explicitly in this paper.

The universal term originates in the Gaussian part of the effective Hamiltonian, with
scaling dimension 2. The higher order terms stem from irrelevant operators with scaling
dimensions 2ν (ν � 2). This is consistent with the absence of backscattering processes in
both the q-Bose model and the Heisenberg chain in a magnetic field: for the q-Bosons, the
conserved particle current excludes backscattering [14]. On the other hand, a finite magnetic
field applied to the Heisenberg chain moves the system away from half filling (in the fermionic
picture) and thus forbids backscattering at low energies as well.

This paper is organized as follows. In the next section, the low-temperature expansion
of g for the q-Bose model is obtained from the corresponding TBA equations. The results
are checked for a certain choice of the interaction parameter (the phase model, [15, 16])
by comparing with an independent expansion in this case and with numerical results. The
third section deals with a high-temperature expansion of the q-Boson model, whereas the
fourth section contains the low-temperature expansion for the critical spin-1/2 XXZ-chain.
Calculations not directly necessary for the understanding of the main text are deferred to the
appendix. In all calculations, units are chosen such that Boltzmann’s constant kB ≡ 1.
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2. Low-temperature asymptotics of the q-Bose model

2.1. Definition of the model

The q-Bose model is a one-dimensional integrable bosonic lattice model that in an appropriate
continuum limit leads to the Lieb–Liniger Bose gas. The lattice regularization stems from
a q-deformation of the underlying commutators [17–19]. Very recently, ground-state and
thermodynamic properties have been calculated numerically and the Gaussian part of the
effective Hamiltonian has been identified [11, 14]. Let us shortly review the definition of the
model.

q-deformed bosonic annihilation and creation operators are defined as

bb† = 1 − q2n+2, b†b = 1 − q2n,

bn = (n + 1)b, b†n = (n − 1)b†,

with 0 � q < 1. In the following, it is often convenient to use the parameterization

q = e−η, η ∈ ]0,∞[ . (2)

A q-oscillator is represented in the Fock space:

n|n〉 = n|n〉; n = 0, 1, 2, 3, . . . ; b|0〉 = 0. (3)

We deal with a chain of length L (periodic boundary conditions) where the local q-oscillator
algebra is assigned to each site � = 1, . . . , L. The quantities

N =
L∑

�=1

n�

P+ = 1

1 − q2

L∑
�=1

b�b†
�+1, P− = 1

1 − q2

L∑
�=1

b�b†
�−1

commute pairwisely. The eigenvalue of N is the number of particles N. The choice of the
Hamiltonian

H = − 1
2 (P+ + P−) − µN , (4)

where µ is the chemical potential, leads [17–19] in the continuum limit to the Lieb–Liniger
Bose gas with Hamiltonian

H = �

2

∫
[∂x�

†(x)∂x�(x) + 2c�†(x)�†(x)�(x)�(x) − µ�†(x)�(x)] dx. (5)

Here, � is the lattice constant of the q-Bose model and the coupling constant c has been
introduced such that η = c · �. Furthermore, trivial constants have been absorbed into µ.

Using the TBA, the thermodynamic potential (which here is −p, with p being the pressure)
was found to be given by [19]

g(T , µ) = −T

∫ π

−π

ln(1 + e−ε(k)/T )
dk

2π
, (6)

where the function ε(k) is obtained from

ε(k) = −cos k − µ − T

∫ π

−π

sinh 2η

cosh 2η − cos(k − k′)
ln(1 + e−ε(k′)/T )

dk′

2π
. (7)

These two equations are valid for arbitrary T. They constitute the starting point for our low-
temperature analysis. We will calculate contributions to g including O(T 4). However, higher
orders can be calculated as well in the approach sketched below.
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Table 1. The ranges of the parameters n, µ,B0.

n 0 ∞
µ −1 0
B0 0 π

2.2. Low-temperature expansion

At T = 0, the function ε(k)|T =0 has two zeros ±B(T = 0) =: ±B0. In [11], the ranges of
the particle density n := N/L, the chemical potential µ and the parameter B0 were given as
in table 1. Here, we are dealing with temperatures T � |µ|, i.e. β := 1/T � |µ|, and we
take the T = 0 case as a point of reference for the ranges of n,µ,B in the low-temperature
regime. To avoid possible singularities, we assume a finite non-zero density 0 < n < ∞, i.e.
−1 < µ < 0, 0 < B < π . Thus, the two zeros of ε are supposed to lie inside the interval
]−π, π [.

Since ε(|k| > B) > 0, terms ∼ exp[−βε(±π)] are exponentially small. This allows us
to eliminate exponentially small quantities by performing two integrations by parts in
equation (6):

g(T , µ) =
∫ π

−π

ε′(k)k

1 + e−βε(k)

dk

2π
− T ln(1 + eβε(k))

k

2π

∣∣∣∣
π

−π

(8a)

= −β

∫ π

−π

ε(k′)k′|k − ∫
k
ε(k′) dk′

4 cosh2 βε(k)

2

ε′(k)
dk

2π
+

1

2π

ε(k)k − ∫
k
ε(k′) dk′

1 + e−βε(k)

∣∣∣∣
π

−π

(8b)

= −
∫ ∞

−∞

β−1uk(u)|k+(u)

k−(u) − ∫ k+(u)

k−(u)
ε(k′) dk′

4 cosh2 u
2

du

2π
. (8c)

As explained above, the boundary terms stemming from the integrations by parts are
exponentially small and are therefore neglected. In the last line, u = βε(k) was substituted
and the integration boundaries sent to ±∞, which results again only into exponentially small
corrections. Since u/β is small by construction, we Taylor-expand ε(k) around ±B to
determine the boundaries k± for the integrand in equation (8c):

u

β
= (k+ − B)ε′(B) +

1

2
(k+ − B)2ε′′(B) +

1

6
(k+ − B)3ε(3)(B) + O

(
k4

+

)
k+ = B +

u

βε′(B)
− ε′′(B)

2ε′3(B)

u2

β2
+

3(ε′′(B))2 − ε′(B)ε(3)(B)

6ε′5(B)

u3

β3
+ O(β−4).

Analogously,

k− = −B − u

βε′(B)
+

ε′′(B)

2ε′3(B)

u2

β2
− 3(ε′′(B))2 − ε′ε(3)(B)

6ε′5(B)

u3

β3
+ O(β−4).

We now expand the integrand of the outer integral in equation (8c) in powers of u. Only even
powers contribute, leading to integrals of the type∫ ∞

−∞

1

4 cosh2 u
2

du = 1 (9a)

∫ ∞

−∞

u2n

4 cosh2 u
2

du = (2n − 1)!4n(1 − 21−2n)ζ(2n), n = 1, 2, . . . . (9b)
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Especially, ζ(2) = π2/6, ζ(4) = π4/90. Then,

g(T , µ) =
∫ B

−B

ε(k′)
dk′

2π
− π

6ε′(B)
T 2 − 7π3

30

3(ε′′(B))2 − ε(3)(B)ε′(B)

12ε′5(B)
T 4 + O(T 6). (10)

In order to identify the T-dependence of ε(k) and B, one performs an asymptotic low-
temperature expansion of the convolution in equation (7) in an analogous way, including
the integration kernel κ(k) := sinh 2η

cosh 2η−cos k
:∫ π

−π

κ(k − k′) ln(1 + e−ε(k′)/T )
dk′

2π
= −β

∫ B

−B

κ(k − k′)ε(k′)
dk′

2π
+ T

π

12

κ(k − B) + κ(k + B)

ε′(B)

+ T 3 7π3

60

{(
(ε′′(B))2

4ε′5(B)
− ε(3)(B)

12ε′4(B)

)
[κ(k − B) + κ(k + B)] − ε′′(B)

4ε′4(B)

× [κ ′(k − B) + κ ′(k + B)] +
[κ ′′(k − B) + κ ′′(k + B)]

12ε′3(B)

}
.

Thus, the integral equation for ε(k) takes the following form:

ε(k) = ε(0)(k) +
∫ B

−B

κ(k − k′)ε(k′)
dk′

2π
(11)

where (we drop the neglected O(T 6) in the following)

ε(0)(k) = −cos k − µ +
∫ B

−B

κ(k − k′)ε(k′)
dk′

2π
− T 2 π

12

κ(k − B) + κ(k + B)

ε′(B)

− T 4 7π3

60

{(
(ε′′(B))2

4ε′5(B)
− ε(3)(B)

12ε′4(B)

)
[κ(k − B) + κ(k + B)] − ε′′(B)

4ε′4(B)

× [κ ′(k − B) + κ ′(k + B)] +
[κ ′′(k − B) + κ ′′(k + B)]

12ε′3(B)

}
. (12)

Consider now the function ρ(k), defined by

ρ(k) = ρ(0)(k) +
∫ B

−B

κ(k − k′)ρ(k′)
dk′

2π
(13)

ρ(0)(k) = 1

2π
. (14)

Note that this function is equal to the density of Bethe ansatz roots in the thermodynamic limit
only for T = 0. For T > 0, the integration boundary B acquires a T-dependence, and so
does ρ.

Due to the symmetry κ(k) = κ(−k), the equality
∫ B

−B
ρ(0)(k)ε(k) dk = ∫ B

−B
ρ(k)ε(0)(k) dk

holds. Using this relation and equation (12), we can manipulate equation (10) further and
obtain

g(T , µ) =
∫ B

−B

ρ(k)(− cos(k) − µ) dk − T 2 π2

3

ρ(B)

ε′(B)

− T 4 7π4

15

[
ρ(B)

(
1

4

(ε′′(B))2

ε′5(B)
− ε(3)(B)

12ε′4(B)

)
− ρ ′(B)ε′′(B)

4ε′4(B)
+

ρ ′′(B)

12ε′3(B)

]
. (15)

We now have to identify the T-dependence of ρ(k), ε(k) and B. Since in the equations for ρ(k)

and ε(k), only even powers of T occur, we make the T-dependence explicit as follows:

B =: B0 + B1T
2 + B2T

4 (16a)
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ρ(k) =: ρ0(k) + ρ1(k)T 2 + ρ2(k)T 4 (16b)

ε(k) =: ε0(k) + ε1(k)T 2 + ε2(k)T 4. (16c)

Let us consider equation (11) first. After inserting (16a), (16c), one obtains equations that
determine εν, ν = 0, 1:

ε0(k) = − cos k − µ +
∫ B0

−B0

κ(k − k′)ε0(k
′)

dk′

2π
(17a)

ε1(k) = − π

12ε′
0

[κ(k − B0) + κ(k + B0)] +
∫ B0

−B0

κ(k − k′)ε1(k
′)

dk′

2π
(17b)

where we abbreviated ε′
0(B0) =: ε′

0. Obviously, B1 is given through

B1 = −ε1(B0)

ε′
0(B0)

. (18)

Note that B1 > 0. It will become clear below that we do not need ε2(k). Analogously,
equations for ρ1,2 are derived:

ρν(k) = ρ(ν)(k) +
∫ B0

−B0

κ(k − k′)ρν(k
′)

dk′

2π
(19a)

ρ(1)(k) = B1
ρ0

2π
[κ(k − B0) + κ(k + B0)] (19b)

ρ(2)(k) = 1

2π

(
B2ρ0 + B1ρ1 +

1

2
B2

1ρ ′
0

)
[κ(k − B0) + κ(k + B0)]

+
1

4π
B2

1ρ0[κ ′(k − B0) − κ ′(k + B0)] (19c)

where ρν(B0) =: ρν , etc (see equation (14) for ρ0).
On the other hand, with dε(k) := −cos k − µ,∫ B

−B

ρ(k)[−cos k − µ] dk =
∫ B0

−B0

ρ0(k)dε(k) dk

+ T 2

{∫ B0

−B0

ρ1(k)dε(k) dk + 2B1ρ0dε(B0)

}

+ T 4

{∫ B0

−B0

ρ2(k)dε(k) dk + 2

[
B2ρ0 + B1ρ1 +

1

2
B2

1ρ ′
0

]
dε(B0) + B2

1ρ0d
′
ε(B0)

}
.

(20)

We insert now (2.2) into equation (20) and make use of ε0(B0) = 0. One ends up with∫ B

−B

ρ(k)[− cos k − µ]dk =
∫ B0

−B0

ρ0(k)[− cos k − µ]dk + T 4ρ0ε
′
0B

2
1 . (21)

Let us look at the second term on the rhs of equation (15). Here, we identify a T 4-contribution
as well, originating in

ρ(B)

ε′
0(B)

= ρ0

ε′
0

+ T 2

[
ρ1

ε′
0

− ε′
1ρ0

ε′2
0

+ B1

(
ρ ′

0

ε′
0

− ε′′
0ρ0

ε′2
0

)]
, (22)
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where, again, εν(B0) =: εν , etc. In the last equation, it is convenient to represent ρ1 in terms
of ε1, which follows from equations (17a), (19a), (19b):

ρ1(k) = − 6

π2
B1ρ0ε

′
0ε1(k). (23)

Taking equations (15), (21), (22), (23) together, we arrive at the low-temperature expansion
of g:

g(T , µ) = g0(µ) + g1(µ)T 2 + g2(µ)T 4 + O(T 6) (24a)

g0(µ) =
∫ B0

−B0

ρ0(k)(−cos k − µ)
dk

2π
(24b)

g1(µ) = −π

6

2πρ0

ε′
0

(24c)

g2(µ) = −
{

7π4

15

[
ρ0

(
(ε′′

0)
2

4ε′5
0

− ε
(3)
0

12ε′4
0

)
− ρ ′

0ε
′′
0

4ε′4
0

+
ρ ′′

0

12ε′3
0

]

+
ρ0ε

2
1

ε′
0

+
π2

3

[
−ε′

1ρ0

ε′2
0

− ρ ′
0ε1

ε′2
0

+
ε′′

0ρ0ε1

ε′3
0

]}
. (24d)

The order T 2 has been obtained previously [11] and is common to one-dimensional critical
systems [20]: the velocity vc associated with the low-lying excitations reads vc = ε′

0/(2πρ0),
so that g1(µ) = π

6vc
. Let us shortly comment on g2. In the first line of equation (24d),

only ε′
0, ρ0 and derivatives of these functions taken at B0 enter. All these quantities are

obtained from the T = 0 Bethe ansatz, analogously to vc. Additionally, the second line of
equation (24d) contains ε1, given through equation (17b).

From equations (24a)–(24d), the charge susceptibility χc(T , µ) = −∂2
µg(T , µ) as a

function of T and µ is derived. When calculating the specific heat however, attention has to
be paid that it is defined at constant particle density, whereas above calculations have been
carried out at constant chemical potential. Thus, the thermodynamic potential acquires a
T-dependence [21]

∂T µ|n = −∂T n|µ
∂µn|T (25)

and we have to consider
C(T , n)

T

∣∣∣∣
n

= −∂2
T g|µ − (∂T n|µ)2

∂µn|T . (26)

Analogously to (16a)–(16c), we write the T-dependence of µ(T , n) explicitly,

µ(T , n) = µ0(n) + µ1(n)T 2.

Then, according to equation (25),

µ1(n) = − π

6χc(T = 0, n)
∂µ0

1

vc

= −π

6
∂n

1

vc

, (27)

where χc(T = 0, n) = Kc/vc, with Kc being the Luttinger parameter, to be obtained from
Kc = 4πρ0(B0) [11]. Note that the same symbols χc, vc are being used for the susceptibility
and velocity as functions of µ0 and of n. The T 2-dependence of µ leads to an additional
contribution to the T 2-term in C/T , stemming from the first term on the rhs of equation (26).
The final result is

C(T , n)

T
= π

3vc(µ0(n))
+ T 2

[
−12g2(µ0(n)) +

π2

6

(
∂µ0vc

v2
c

)2 1

χc(T = 0, n)

]
+ O(T 4). (28)
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Let us shortly comment on the integrable Lieb–Liniger Bose gas, equation (5). The
analogues of equations (6), (7), (13) read

ρ(k) = 1

2π
+

∫ B

−B

2c

c2 + (k − k′)2
ρ(k′)

dk′

2π

ε(k) = k2 − µ − T

∫ ∞

−∞

2c

c2 + (k − k′)2
ln(1 + e−βε(k′))

dk′

2π

g(T , µ) = −T

∫ ∞

−∞
ln(1 + e−βε(k′))

dk′

2π
.

(29)

Setting up equations for ρ0,1, ε0,1 as above, the results (24b)–(24d) yield g0,1,2. The case of
very strong interaction c/n � 1 allows for the explicit calculation of g0,1,2 including the order
n/c, because in this case the integration kernel in equation (29) (and in the equations for ε0,1)
becomes independent of the spectral parameter. As a result,

ρ0(k) = 1

2π

(
1 +

2B0

cπ

)
, B0 = nπ

ε′
0(k) = 2k, ε1(k) = − π

6cB0

g0 = −2n3π3

3π

(
1 − 6nπ

c

)

g1 = − 1

12n
− 1

3c

g2 = − 7

960π2n5
− 11

1440π2n4c
,

where n ≡ n(µ) with µ(n) = n2π2 − 16n3π2

3c
. The chemical potential and the specific heat at

constant density read

µ(T , n) =
(

n2π2 − 16n3π2

3c

)
+

T 2

12n2
+ O(T 4)

C(T , n)

T
=

(
1

6n
+

2

3c

)
+

(
1

12n5π2
− 3

40π2n4c

)
T 2.

2.3. The q = 0 case

In this section, we focus on the case q = 0 in equation (2), i.e. η → ∞. The corresponding
model has been termed the ‘phase model’ in [15, 16]. This case is intriguing in so far as
ground-state properties at T = 0 can be calculated explicitly (i.e., the corresponding linear
integral equations can be solved), while at the same time the model still describes correlated
bosonic particles. The reason for the solvability of the T = 0 equations is that the integration
kernel κ(k) ≡ 1 here. Since in the previous section, the coefficients of the low-temperature
expansion have been expressed in terms of T = 0-quantities only, these coefficients can be
calculated explicitly for q = 0. Furthermore, a very accurate numerical iteration procedure is
possible in this case, which allows us to test the analytic results against the numerics.

We defer the detailed calculations to the appendix. The specific heat at constant density
reads
C(T , n)

T
= π

3

n + 1

sin nπ
n+1

+
π3

60

(n + 1)
(
23 + 9 cos 2nπ

n+1

)
sin5 nπ

n+1

T 2

+
π5

12096

(n + 1)
(
33183 + 28012 cos 2nπ

n+1 + 1525 cos 4nπ
n+1

)
sin9 nπ

n+1

T 4 + O(T 6). (30)
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It is worthwhile noting that all coefficients are positive. Furthermore, for n → 0, the coefficient
of the order T 2ν diverges ∼n−4ν+1, whereas for n → ∞ the divergence is ∼n4ν+2. Note that
both divergences are excluded from the beginning by having restricted µ to −1 < µ < 0, that
is, the density is supposed to be finite non-zero.

3. Comment on the high-temperature expansion of the q-Bose model

In this section, we indicate how to perform a high-temperature expansion of the q-Bose model
at fixed density n. The general formulation is presented first, before concentrating on the
q = 0 case. The goal is an asymptotic expansion of the form g(T , µ)/T = ∑

ν gν(µ)βν

(in a slight abuse of notation, we use the same symbols for the coefficients as in (1)), with
ν = 0, 1, 2, . . . .

3.1. General formalism

Let us write the integral equation (7) in terms of ln a(k) := −βε(k) and A = 1 + a:

ln a(k) = β cos k + βµ +
∫ π

−π

κ(k − k′) ln A(k′)
dk′

2π
. (31)

The k-dependent driving term on the rhs is bounded. Similarly to the low-temperature
expansion, we make the T-dependence explicit in the following ansatz:

ln A = α0 +
α1

T
+

α2

T 2
+ O(T −3) (32a)

ln a = ln(eα0 − 1) +
α1

1 − e−α0
T −1 +

−α2
1 + 2α2(−1 + eα0)

4 cosh2 α0
2

T −2. (32b)

Since n is to be held constant, we have to retain µ in equation (31) so that its T-dependence
can be determined. Thus in zeroth order,

α0 = − ln(1 − eβµ).

Furthermore, from equation (6) it follows for the particle density n that n = ∂βµα0, which
results in

βµ = ln
n

n + 1
. (33)

Here, the leading T-dependence of µ such that n is constant is displayed: µ ∼ T . From this,
the canonical potential gc := g(T , µ(T , n)) + µ(T , n)n is calculated:

gc = −T [(n + 1) ln(n + 1) − n ln n]. (34)

The corresponding entropy

S(T , n) = (n + 1) ln(n + 1) − n ln n (35)

can be understood as follows: consider N (classical) particles to be distributed on L lattice
sites. There are

�(N,L) = (N + L)!

(N + 1)!(L − 1)!

possibilities of doing this. The associated combinatorial entropy per lattice site is S�(N,L) =
1
L

ln �(N,L). In the thermodynamic limit N,L → ∞, N/L = n fixed, this agrees with (35).
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Proceeding further, one finds the linear integral equation for the coefficient α1:

α1(k) e−βµ0 = cos k +
∫ π

−π

κ(k − k′)α1(k
′)

dk′

2π
, (36)

and the corresponding expansion of g:

g(T , µ) = T ln(1 − e−βµ) −
∫ π

−π

α1(k
′)

dk′

2π
.

From equation (36) it follows that
∫ π

−π
α1(k

′) dk′ = 0, such that the leading T-dependent
contribution to g is O(β).

In order β2, the insertion of equation (3.1) into equation (31) yields

−α2
1(k) + 2α2(k)(eα0 − 1)

4 cosh2 α0
2

=
∫ π

−π

κ(k − k′)α2(k
′)

dk′

2π
.

Once α2 is determined from this equation, one has

g(T , µ)

T
= ln(1 − e−βµ) − β2

∫ π

−π

α2(k
′)

dk′

2π
+ O(β−3),

from which one can calculate n = −∂µg(T , µ) and therefrom the T-dependence of µ for fixed
n, i.e. the coefficient µ1 in the expansion µ(T ) = µ0 + βµ1. Eventually, one arrives at the
canonical potential gc(T , n) := g(T , µ(T , n)) − µ(T , n)n, from which one obtains C(T )|n
with the leading T-dependence C(T ) ∼ β2. We do not carry out this program here in its
full generality, but rather concentrate on the q = 0 case, where the integral equations can be
solved and thus the coefficients of the high-temperature expansion calculated explicitly.

3.2. The q = 0 case

For q = 0, we take advantage of equation (A.1) in appendix A. By expanding the integrand
there in powers of β cos k, one obtains

−βg(T , µ) =
[

ln(1 + ex) +
β2

16 cosh2 x
2

+
β4

512

−2 + cosh x

cosh4 x
2

+
β6

73728

33 − 26 cosh(x) + cosh 2x

cosh6 x
2

]
x=β(µ−g(T ,µ))

. (37)

Furthermore, also from equation (A.1), the particle density is obtained as

n(T , µ) = α(T , µ)

1 − α(T , µ)

α(T , µ) =
∫ π

−π

1

1 + e−β cos k−βµ+βg(T ,µ)

dk

2π
,

which yields n in terms of µ − g(T , µ):

n =
[

ex − β4

4
ex tanh

x

2
+

β4

128
ex 3 + cosh x + 2 sinh x

cosh2 x
2

tanh
x

2
+

β4

18432
ex

× 42 + 16 cosh x + 10 cosh(2x) + 54 sinh x + 9 sinh(2x)

cosh4 x
2

tanh
x

2

]
x=β(µ−g(T ,µ))

. (38)
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Figure 1. The specific heat for q = 0, n = 0.5, 1, 2, 4, together with the low- and high-temperature
asymptotics according to equations (30), (39).

From equation (38), β(µ − g) is obtained as a function of n order by order in β2. This
result is then used in equation (37) to express g in terms of n. Finally, the first terms of
high-temperature-expansions of the canonical potential gc and the specific heat read

gc(T , n) = −T [(n + 1) ln(n + 1) − n ln n] − β
n

4(1 + n)
+ β4 n(1 + n2)

64(1 + n3)

−β6 n(2 − n + 6n2 − n3 + 2n4)

1152(1 + n)5

C(T , n) = n

2(1 + n)
β2 − 3n(1 + n2)

16(1 + n)3
β4 +

5n(2 − n + 6n2 − n3 + 2n4)

192(1 + n)5
β6. (39)

3.3. Comparison with numerics for q = 0

The difficulty in a numerical calculation lies in the steep (∼β) gradient of ε(k) around k ≈ ±B.
The induced numerical inaccuracy generally is too high to allow for a quantitative check
of the coefficients (although the exponents in the low-T expansion could be identified [11]).
However, at q = 0 the iterative numerical approach becomes particularly accurate because
only one nonlinear integral equation has to be solved (see equation (A.1) in the appendix).
Results for different n at q = 0 are shown in figures 1 and 2.

4. Low-temperature asymptotics of the XXZ -model in a field

It turns out that a low-temperature expansion for the free energy of the spin-1/2 XXZ-model
in a magnetic field is technically very similar to the one given above for the q-Bose model.
This is not too surprising, as argued in the introduction.

The Hamiltonian is defined as

H = J

L∑
�=1

[
Sx

� Sx
�+1 + S

y

� S
y

�+1 + (cos γ )Sz
�S

z
�+1

]
+ h

L∑
�=1

Sz
�, (40)
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Figure 2. Low- and high-temperature asymptotics of the specific heat at q = 0 and n = 0.5, 1, 2, 4.
In (a), the order T 7 of C(T ) is shown on a double logarithmic scale, after having subtracted the
T-, T 3-, T 5-contributions according to equation (30) (denoted by Cex,lt in the figure). The dashed
straight line is ∝ T 7 and a guideline to the eye. Analogously, in (b), the β8-contribution in C
is shown, where the orders β2, β4, β6 have been subtracted following equation (39) (denoted by
Cex,ht in the figure). Here, the straight dashed line is ∝β8.

where 0 � γ < π is chosen such that the model is critical and low-energy excitations have
a linear dispersion relation. The summation runs over the L lattice sites of the chain, where
periodic boundary conditions are imposed.

Currently, three (equivalent [22]) approaches to calculate the thermodynamics exactly are
known: the TBA, the QTM and the single-integral-equation approach [23]. For our purposes,
the formulation developed within the framework of the QTM technique is best suited. The
free energy per lattice site is given by

f (T , h) = e0 − T

2π

π

γ
[d ∗ ln BB](0)

ln b(x) = −βv(0)
s d(x) +

π

2(π − γ )
βh + [κ ∗ ln B − κ− ln B](x)

ln b(x) = −βv(0)
s d(x) − π

2(π − γ )
βh + [κ ∗ ln B − κ+ ln B](x)

v(0)
s = J

π sin γ

2γ

B = 1 + b,B = 1 + b

d(x) = 1

cosh π
γ
x

κ(x) =
∫ ∞

−∞

sinh
(

π
2 − γ

)
k eikx

2 cosh γ

2 k sinh
(

π
2 − γ

2

)
k

dk

2π

κ±(x) = κ(x ± iγ ∓ iε)

(41)
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and convolutions are defined as [f ∗ g](x) := ∫ ∞
−∞ f (x − y)g(y) dy. The quantity e0 is

the ground-state energy, v(0)
s the spin velocity at zero magnetic field. We now focus on the

low-temperature regime, that is, βh � 1. In this case, ln B ∼ exp[−βh] is exponentially
small and thus is neglected. It is convenient to introduce βε(x) := ln b(x). Then,

f (T , h) − e0 = − T

2π

∫ ∞

−∞

π

γ
d(x) ln(1 + eβε(x)) dx

= − 1

2π

∫ ∞

−∞

π

γ
d(x)ε(x) dx − T

2π

∫ ∞

−∞

π

γ
d(x) ln(1 + e−βε(x)) dx

ε(x) = −v(0)
s d(x) +

π

2(π − γ )
h + T

∫ ∞

−∞
κ(x − y) ln(1 + eβε(y)) dy

= −v(0)
s d(x) +

π

2(π − γ )
h

+
∫ ∞

−∞
κ(x − y)ε(y) dy + T

∫ ∞

−∞
κ(x − y) ln(1 + e−βε(y)) dy. (42)

Using Fourier transform techniques, the last equation is written in a more compact manner as
(we rename the spectral parameter as k)

ε(k) = −v(0)
s

γ

π
κ̂ γ

2
(k) + βh +

∫ ∞

−∞
κ̂γ (k − k′) ln(1 + e−βε(k′))

dk′

2π

κ̂γ (k) = 2 sin(2γ )

cosh(2k) − cos(2γ )
,

(43)

which makes the similarity with equation (7) apparent.
One now goes through the same steps as in the analysis above. We give the corresponding

results in the following. The functions ρ0,1 satisfy the linear integral equations

ρν(k) = ρ(ν)(k) +
∫ B0

−B0

κ̂γ (k − k′)ρν(k
′)

dk′

2π

ρ(0)(k) = 1

2γ
d(k)

ρ(1)(k) = B1
ρ0

2π
[κ̂γ (k − B0) + κ̂γ (k + B0)]

and for the functions ε0,1(k) we find

εν(k) = ε(ν)(k) +
∫ B0

−B0

κ̂γ (k − k′)εν(k
′)

dk′

2π
(44a)

ε(0)(k) = −v(0)
s

γ

π
κ̂ γ

2
(k) + h (44b)

ε(1)(k) = − π

12ε′
0

[κ̂γ (k − B0) + κ̂γ (k + B0)] +
∫ B0

−B0

κ̂γ (k − k′)ε1(k
′)

dk′

2π
. (44c)

The shift B1 is given by equation (18), with ε1,0 specified in equations (44a)–(44c). The
low-temperature expansion of the free energy reads

f (T , h) = f0(h) + f1(h)T 2 + f2(h)T 4 + O
(
T 6

)
(45a)

f0(h) = e0 +
1

2π

∫
|k|>B0

d(k)v(0)
s κ̂ γ

2
(k) dk (45b)
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f1(h) = −π2

3

ρ0

ε′
0

(45c)

f2(h) = −
{

7π4

15

[
ρ0

(
(ε′′

0)
2

4ε′5
0

− ε
(3)
0

12ε′4
0

)
− ρ ′

0ε
′′
0

4ε′4
0

+
ρ ′′

0

12ε′3
0

]

+
ρ0ε

2
1

ε′
0

+
π2

3

[
−ε′

1ρ0

ε′2
0

− ρ ′
0ε1

ε′2
0

+
ε′′

0ρ0ε1

ε′3
0

]}
(45d)

where ε0 := ε0(B0), etc.
In this model, the particle density is constant per construction, so that the specific heat

can be calculated directly from C(T , h)/T = −∂T f (T , h). However, formula (26), with µ

replaced by h, can be used to calculate the specific heat at constant magnetization m. The
results in equations (45a)–(45d) are confirmed for free fermions, cf appendix B.

5. Summary and outlook

The q-Bose model and the critical spin-1/2 Heisenberg chain in an external magnetic field were
studied in the regime of low temperatures. In both cases, the thermodynamic potentials could
be expanded in terms of even powers of T. We developed a method that can be used to calculate
the coefficients of this expansion, and carried out the calculation for the T 4-contribution.

Directions for future research are twofold: one question is in how far the results obtained
here can be used to determine the coefficients of the leading irrelevant operators in the low-
energy effective Hamiltonians for these models. The other question concerns the relationship
between the spin chain and the bosonic model. The absence of backscattering in both models
(at low energies for the spin chain) suggests that a relationship exists on a more fundamental
level.
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Appendix A. Specific heat at q = 0

By combining equations (6), (7), it is not difficult to show that for q = 0,

g(T , µ) = −T

∫ π

−π

ln(1 + exp(β cos k + βµ − βg(T , µ)))
dk

2π
. (A.1)

In the low-temperature regime β � |µ|,

g(T , µ) = −β

∫ π

−π

(−k cos k + sin k) sin k

4 cosh2 β

2 (cos k + µ − g(T , µ))

dk

2π
,

which is obtained by two integrations by parts, neglecting exponentially small quantities. One
now substitutes u = β(cos k + µ − g(T , µ)) and obtains

g(T , µ) = −2
∫ ∞

−∞

√
1 − (

u
β

− (µ − g)
)2 − (

u
β

− (µ − g)
)

arccos
[

u
β

− (µ − g)
]

4 cosh2 u
2

du

2π
,
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where the integration boundaries have been sent to ±∞, again neglecting exponentially small
corrections, and the (T , µ)-dependence of g has not been displayed explicitly on the rhs. One
now expands the integrand in powers of u/β and makes use of equations (9a), (9b), resulting
in

g(T , µ) = − 1

π

[√
1 − (µ − g)2 + (µ − g) arccos(g − µ)

] − T 2 π

6

1√
1 − (µ − g)2

− T 4 7π3

360

1 + 2(µ − g)2

(1 − (µ − g)2)5/2
− T 6 31π5

5040

3 + 8(µ − g)2(3 + (µ − g)2)

(1 − (µ − g)2)9/2
+O(T 8).

(A.2)

This equation for g can be solved order by order by expanding g = g0+g1T
2+g2T

4+g3T
6.

This allows for the calculation of n(µ, T ), and therefrom, by holding n fixed, the (T , n)-
dependence of µ is derived:

µ(T , n) = −
(

cos B0

n + 1
+

1

π
sin B0

)
+

π (−1 − n + π cot B0)

6(n + 1) sin B0
T 2

+
π3 (293π cos B0 + 27π cos(3B0) − (n + 1) (37 sin B0 + 9 sin(3B0)))

1440(n + 1) sin6 B0
T 4

+
π5

725760 sin10 B0
(1088882π cos B0 + 275885π cos(3B0) + 11153π cos(5B0)

− (n + 1)(38354 sin B0 + 26487 sin(3B0) + 1525 sin(5B0))) T 6 (A.3)

B0 = nπ

n + 1
. (A.4)

Taking this T-dependence of µ into account, one arrives at the specific heat, taken at constant n,
equation (30). Furthermore, the charge susceptibility is obtained as χc(T , n) = 1/∂nµ(T , n).

Let us now confirm these results from the general formulae (24a)–(24d), (28).
Equations (19a) (for ν = 0 there) and (17a) are solved by

ρ0 = 1

2(π − B0)

ε0(k) = − cos k − µ − sin B0 + B0µ

π − B0
.

The condition ε0(±B0) = 0 yields

µ = − sin B0

π
+

(
B0

π
− 1

)
cos B0.

According to equations (7), (A.2), ε(k) = − cos k − µ + g, and thus cos B0 = g0 − µ. On the
other hand, we know [11] that

∫ B0

−B0
ρ0dk/2π = n, which yields equation (A.4). This confirms

the T 0-order of equation (A.3) and is consistent with n(µ0) = −∂µ0g0(µ0). However for the
sake of brevity, we do not display the µ0-dependence of n. The coefficients (24c), (24d) can
thus be calculated and read

g1 = − π

6vc

g2 = π

π − B0

(
− π

72v2
c sin B0

+
π2 cos B0

36vc sin3 B0
− 7π3(1 + 2 cos2 B0)

360 sin5 B0

)

vc = 1

n + 1
sin

πn

n + 1
.
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These results are confirmed by the slightly different analytical calculation sketched in the first
part of this appendix. Note that the q = 0 case is special in so far as ρ0(k) is a constant, as
well as ε1(k).

Appendix B. Specific heat for free fermions

We calculate the first terms of a low-temperature expansion of the free energy for free spinless
fermions on a lattice in two different ways: directly and using the exact solution. Both are
equivalent and yield the same results.

At γ = π/2, a Jordan–Wigner transformation followed by a Fourier transformation of
the Hamiltonian (40) yields

H =
N∑

j=1

(J cos kj + h)c
†
kj

ckj
with kj = 2π

N
j.

Thus in the thermodynamic limit,

−βf (T , h) = 1

2π

∫ 2π

0
ln(1 + e−β(J cos x+h)) dx,

which is very similar to equation (A.1). Proceeding analogously to there, one finds

f (T , h) = −J

π




√
1 −

(
h

J

)2

− h

J
arccos

h

J


 − J

π

6

(
T

J

)2 1√
1 − (h/J )2

− J
7π3

360

(
T

J

)4 1 + 2(h/J )2√
1 − (h/J )2

5/2
. (B.1)

On the other hand, we may use the exact solution, equation (4), with

ρ(k) = 1

π cosh 2x

ε(k) = − J

cosh 2x
+ h

B = 1

2
arccosh

J

h
.

Note that ρ(k) ≡ ρ0(k), ε(k) ≡ ε0(k), B ≡ B0 here. Inserting these values into equation (4),
one confirms the result (B.1).
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